Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

 Ham radio operators often broadcast on the 6-meter band. The frequency of this electromagnet MHz. 					netic radiation is	
	A) 50	B) 20	C) 2.0	D) 200	E) 500	
2)	What is the frequency of light (s ⁻¹) that has a wavelength of 1.23×10^{-6} cm?					
	A) 2.44 x 10 ¹⁶	B) 1.04 x 10 ⁻¹³	C) 9.62 x 10 ¹²	D) 3.69	E) 4.10 x 10 ⁻¹⁷	
3)	The wavelength of a ph	oton that has an energy	√ of 5.25 x 10− ¹⁹ J is	m.		
	A) 4.21 x 10 ⁻²⁴	B) 2.38 x 10 ²³	C) 2.64 x 10 ⁶	D) 3.79 x 10 ⁷	E) 3.79 x 10 ⁻⁷	
4)	The frequency of a photo	ton that has an energy o	of 3.7 x 10-18 J is	s-1.		
	A) 5.4 x 10 ⁻⁸	B) 5.6 x 10 ¹⁵	C) 1.8 x 10-16	D) 2.5 x 10 ⁻¹⁵	E) 2.5 x 10 ¹⁵	
5)	A mole of red photons	of wavelength 725 nm h	naskJ of en	ergy.		
	A) 6.05 x 10 ⁻³	B) 2.74 x 10 ⁻¹⁹	C) 4.56 x 10 ⁻⁴⁶	D) 227	E) 165	
6)	Of the following transitions in the Bohr hydrogen atom, the transition results in the emission of the highest-energy photon.					
	A) $n = 6 \rightarrow n = 1$	B) $n = 1 \rightarrow n = 6$	C) $n = 3 \rightarrow n = 6$	D) $n = 6 \rightarrow n = 3$	E) $n = 1 \rightarrow n = 4$	
7)	Using Bohr's equation for the energy levels of the electron in the hydrogen atom, determine the energy (J) of an electron in the $n = 4$ level.					
	A) -5.45 x 10 ⁻¹⁹	B) -1.84 x 10 ⁻²⁹	C) -1.36 x 10 ⁻¹⁹	D) +1.84 x 10 ⁻²⁹	E) -7.34 x 10 ¹⁸	
8)	The lines in the emissio	n spectrum of hydroge	n result from	·		
	A) electrons given off by hydrogen as it cools					
	B) decomposing hydrogen atoms					
	C) electrons given off by hydrogen when it burns					
	D) energy given off in the form of visible light when an electron moves from a higher energy state to a lower energy state					
	E) protons given off v	vhen hydrogen burns				
9)	When the electron in a l emitted.	hydrogen atom moves i	from $n = 6$ to $n = 2$, ligh	t with a wavelength of _	nm is	
	A) 657	B) 93.8	C) 411	D) 434	E) 487	
10)	What is the De Broglie	wavelength (m) of a 2.0	kg object moving at a s	speed of 50 m/s?		
	A) 1.5 x 10 ³⁵	B) 3.8 x 10 ³⁴	C) 2.6 x 10 ⁻³⁵	D) 5.3 x 10 ⁻³³	E) 6.6 x 10 ⁻³⁶	

11) All of the orbitals in a given electron shell (energy level) have the same value of the					_quantum
	A) spin	B) principal	C) azimuthal	D) magnetic	E) psi
12)	All of the orbitals in a g number.	given subshell (energy s	ublevel) have the same	value of the	quantum
	A) azimuthal	B) magnetic	C) principal	D) A and B	E) B and C
13)	There arep	possible values for the m	agnetic quantum numb	per of an electron in a 5f	subshell.
	A) 7	B) 3	C) 14	D) 5	E) 1
14)	Which of the subshells	below do <u>not</u> exist due	to the constraints upon	the azimuthal quantum	number?
	A) 2p				
	B) 2s				
	C) 2d				
	D) all of the above				
	E) none of the above				
15)	orbitals ar	e spherically symmetric	al.		
	A) d	B) g	C) p	D) f	E) s

16) Which sketch represents an orbital with the quantum numbers n = 3, l = 0, and $m_l = 0$?

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

17) On the axes below, draw the general shape of a p_V orbital.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

18) Each p-orbital	B) Each p-orbital can accommodate a may		electrons.	
A) 5	B) 3	C) 1	D) 2	E) 6

19) Which one of the following represents an acceptable possible set of quantum numbers (in the order n, l, m_l, m_s) for an electron in an atom?

A) 2, 1, 0, 0 B) 2	2, 2, 0, 1/2	C) 2, 0, 2, +1/2	D) 2, 0, 1, -1/2	E) 2, 1, -1, 1/2
--------------------	--------------	------------------	------------------	------------------

20) Which electron configuration represents a violation of the Pauli exclusion principle?

A) [Kr] $5s^{1}4d^{10}$ B) [Kr] $5s^{2}4d^{10}$ C) [Ar] $4s^{2}4d^{9}$ D) [Kr] $5s^{2}3d^{9}$ E) [Ar] $4s^{1}4d^{10}$

22) Which electron configuration denotes an atom in its ground state?

- 23) The ground state electron configuration of Fe is _____.
 - A) 1s22s23s23p63d6
 - B) 1s²2s²2p⁶3s²3p⁶4s²4d⁶
 - C) 1s²2s²2p⁶3s²3p⁶4s²
 - D) 1s²2s²2p⁶3s²3p⁶3d⁶4s²
 - E) 1s²2s²3s²3p¹⁰

24) Which one of the fo	4) Which one of the following configurations depicts an excited carbon atom?						
A) 1s ² 2s ² 2p ³	B) 1s ² 2s ² 2p ²	C) 1s ² 2s ² 3s ¹	D) 1s ² 2s ² 2p ¹	E) 1s ² 2s ² 2p ¹ 3s ¹			

Consider the following electron configurations to answer the questions that follow:

(i) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹
(ii) 1s² 2s² 2p⁶ 3s² 3p⁵
(iii) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁸
(iv) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶
(v) 1s² 2s² 2p⁴ 3s¹
25) An example of an electron configuration of a transition metal is _____

- 26) An example of an excited state electron configuration for fluorine is _____.A) (i)B) (ii)C) (iii)D) (iv)E) (v)
- 27) Elements in group ______ have a np⁶ electron configuration in the outer shell.

- 28) The electron configuration of the valence electrons of an atom in its ground state is ns²np¹. This atom is a group ______ element.
 - A) q B) r C) s D) t E) y
- 29) In which set of elements would all members be expected to have very similar chemical properties?A) S, Se, SiB) O, S, SeC) Ne, Na, MgD) N, O, FE) Na, Mg, K
- 30) Atomic radius generally increases as we move _____
 - A) up a group and from right to left across a period
 - B) down a group; the period position has no effect
 - C) up a group and from left to right across a period
 - D) down a group and from right to left across a period
 - E) down a group and from left to right across a period
- 31) The atomic radius of main-group elements generally increases down a group because _____
 - A) effective nuclear charge increases down a group
 - B) the principal quantum number of the valence orbitals increases
 - C) effective nuclear charge decreases down a group
 - D) effective nuclear charge zigzags down a group
 - E) <u>both</u> effective nuclear charge increases down a group <u>and</u> the principal quantum number of the valence orbitals increases

32) Screening by core electrons in atoms is _____.

- A) more efficient than that by valence electrons
- B) responsible for a general decrease in atomic radius going down a group
- C) essentially identical to that by valence electrons
- D) less efficient than that by valence electrons
- E) <u>both</u> essentially identical to that by valence electrons <u>and</u> responsible for a general decrease in atomic radius going down a group
- 33) Which one of the following has the smallest radius?

 A) P
 B) Na
 C) Br
 D) Cl
 E) Fe

A) Co		the largest radius.			
	B) Sr	C) I	D) Ca	E) Ba	
sider the following el	lectron configurations to ans	wer the questions that follow	w:		
(i) [Kr] 5s ¹ (ii) [Ne] 3s ² 3 (iii) [Ar] 4s ² 3 (iv) [Ne] 3s ² 3	5 d10 4p4 3p6				
(v) [Ar] 4s ¹	-				
35) The electror	ι configuration of the atom	that is expected to have	the lowest first ionizat	ion energy is	
A) (i)	B) (ii)	C) (iii)	D) (iv)	E) (v)	
36) The electror	۱ configuration of the atom	n that is expected to have	the highest first ioniza	tion energy is	
A) (i)	B) (ii)	C) (iii)	D) (iv)	E) (v)	
37) Of the choic	es below, which gives the	order for first ionization	energies?		
A) Cl > S	> A1 > Ar > Si				
$\begin{array}{c} \text{R} \\ \text{S} \\ \text{S} \\ \text{S} \\ \text{S} \end{array}$	> Cl > Al > Ar				
$C) \Lambda 1 > S$	S = S = C = Ar				
C) $AI > SI > S > CI > Ar$					
D C $T > 3$	> AI > SI > AI				
	J > S > SI > AI				
E / AI > C					
38) The first ion periodic tab A) increase	nization energies of the eler le, and as you e, increase	ments as you go from the bottom to th	go from left to right ac top of a group in the	ross a period of the table.	
38) The first ion periodic tab A) increase B) increase	uization energies of the eler e, and as you e, increase e, decrease	ments as you go from the bottom to th	go from left to right ac top of a group in the	ross a period of the table.	
38) The first ion periodic tab A) increase B) increase C) decrease	nization energies of the eler e, and as you e, increase e, decrease se, increase	ments as you go from the bottom to th	go from left to right ac top of a group in the	ross a period of the table.	
2) Ar > C 38) The first ion periodic tab A) increase B) increase C) decreas D) decreas	nization energies of the elem e, and as you e, increase e, decrease se, increase se, increase se, decrease	ments as you go from the bottom to th	go from left to right ac le top of a group in the	ross a period of the table.	
2) At > C 38) The first ion periodic tab A) increase B) increase C) decrease D) decrease E) are com	nization energies of the eler e, and as you e, increase e, decrease se, increase se, decrease se, decrease npletely unpredictable	ments as you go from the bottom to th	go from left to right ac le top of a group in the	ross a period of the table.	
 B) AT > C 38) The first ion periodic tab A) increase B) increase C) decrease D) decrease E) are com 	nization energies of the eler e, and as you e, increase e, decrease se, increase se, decrease apletely unpredictable have the lowest <u>first</u> ioniza	ments as you go from the bottom to th ation energies of the grou	go from left to right ac le top of a group in the 1ps listed.	ross a period of the table.	
 E) AT > C 38) The first ion periodic tab A) increase B) increase C) decrease D) decrease E) are com 39) A) Transiti 	nization energies of the eler ele, and as you e, increase e, decrease se, increase se, decrease npletely unpredictable have the lowest <u>first</u> ioniza ion elements	ments as you go from the bottom to th ation energies of the grou	go from left to right ac le top of a group in the 1ps listed.	ross a period of the table.	
 a) Ai > C 38) The first ion periodic tab A) increase B) increase C) decrease D) decrease E) are com 39) A) Transiti B) Haloge 	nization energies of the eler ele, and as you e, increase e, decrease se, increase se, decrease npletely unpredictable have the lowest <u>first</u> ioniza ion elements	ments as you go from the bottom to th ation energies of the grou	go from left to right ac le top of a group in the ups listed.	ross a period of the table.	
 a) Ai > C 38) The first ion periodic tab A) increase B) increase C) decrease D) decrease E) are com 39) A) Transition B) Haloge C) Alkalin 	nization energies of the elem ele, and as you e, increase e, decrease se, increase se, decrease npletely unpredictable have the lowest <u>first</u> ionization elements ns le earth metals	ments as you go from the bottom to th ation energies of the grou	go from left to right ac le top of a group in the 1ps listed.	ross a period of the table.	
 a) Ai > C 38) The first ion periodic tab A) increase B) increase C) decrease D) decrease E) are com 39) A) Transiti B) Haloge C) Alkalin D) Alkalin 	nization energies of the eler ole, and as you e, increase e, decrease se, increase se, decrease apletely unpredictable have the lowest <u>first</u> ionization elements as ie earth metals metals	ments as you go from the bottom to th ation energies of the grou	go from left to right ac le top of a group in the ups listed.	ross a period of the table.	
 a) Ai > C 38) The first ion periodic tab A) increase B) increase C) decrease D) decrease E) are com 39) A) Transition B) Haloge C) Alkalin D) Alkalin E) Noble set 	nization energies of the eler ole, and as you e, increase e, decrease se, increase se, decrease npletely unpredictable have the lowest <u>first</u> ioniza- ion elements ns le earth metals metals	ments as you go from the bottom to th ation energies of the grou	go from left to right ac le top of a group in the 1ps listed.	ross a period of the table.	
 a) Ai > C 38) The first ion periodic tab A) increase B) increase C) decrease D) decrease E) are con 39) A) Transiti B) Haloge C) Alkalin D) Alkalin E) Noble § 	nization energies of the eler ole, and as you e, increase e, decrease se, increase se, decrease npletely unpredictable have the lowest <u>first</u> ionization elements ns ie earth metals netals gases	ments as you go from the bottom to th ation energies of the grou	go from left to right ac le top of a group in the ups listed.	ross a period of the table.	
 a) Ai > C 38) The first ion periodic tab A) increase B) increase C) decrease D) decrease E) are com 39) A) Transition B) Haloge C) Alkalin D) Alkalin E) Noble § 40) Which of the 	nization energies of the eler ple, and as you e, increase e, decrease se, increase se, decrease npletely unpredictable have the lowest <u>first</u> ioniza- ion elements ms ie earth metals metals gases e following has the largest	ments as you go from the bottom to th ation energies of the grou	go from left to right ac le top of a group in the 1ps listed. y?	ross a period of the table.	

41) Which of the fo	llowing correctly represents	the <u>second</u> ionization	of calcium?				
A) Ca ⁺ (g) \rightarrow	A) $Ca^+(g) \rightarrow Ca^{2+}(g) + e^-$						
B) Ca (g) \rightarrow	B) Ca (g) \rightarrow Ca ⁺ (g) + e ⁻						
C) Ca- (g) +	C) Ca- (g) + $e^- \rightarrow Ca^{2-}$ (g)						
D) Ca ⁺ (g) +	D) $Ca^+(g) + e^- \rightarrow Ca(g)$						
E) Ca+ (g) +	$e^- \rightarrow Ca^{2+}(g)$						
42) Which ion in th	e isoelectronic series below l	nas the smallest radius	s in a crystal?				
A) O ^{2–}	B) N ³ -	C) Na ⁺	D) Al ³⁺	E) F-			
43) Which of the fo	llowing sets contains species	that are isoelectronic	?				
A) Cl, Ar, K	B) F ⁻ , Ne, Na ⁺	C) F, Ne, Na	D) Al ³⁺ , S ^{2–} , Ar	E) P ^{3–} , S ^{2–} , Ar–			
44) Of the following	44) Of the following elements, has the most negative electron affinity.						
A) Be	B) N	C) F	D) Li	E) Na			
45) Sodium is much more apt to exist as a cation than is chlorine. This is because							
A) chlorine is a gas and sodium is a solid							
B) chlorine is	B) chlorine is more metallic than sodium						
C) chlorine ha	C) chlorine has a greater ionization energy than sodium does						
D) chlorine ha	D) chlorine has a greater electron affinity than sodium does						
E) chlorine is bigger than sodium							
46) Of the elements below, is the most metallic.							
A) sodium	B) barium	C) calcium	D) cesium	E) magnesium			

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) A ID: chem9b 6.1-5 2) A ID: chem9b 6.1-9 3) E ID: chem9b 6.1-13 4) B ID: chem9b 6.1–16 5) E ID: chem9b 6.1-23 6) A ID: chem9b 6.1–32 7) C ID: chem9b 6.1-33 8) D ID: chem9b 6.1-41 9) C ID: chem9b 6.1-42 10) E ID: chem9b 6.1–51 11) B ID: chem9b 6.1-61 12) D ID: chem9b 6.1-62 13) A ID: chem9b 6.1-65 14) C ID: chem9b 6.1-68 15) E ID: chem9b 6.1-86
- 16) D ID: chem9b 6.1-87

Answer Key Testname: CH_07_PRAC_TEST.TST

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 18) D ID: chem9b 6.1-95
- 19) E ID: chem9b 6.1–103
- 20) A ID: chem9b 6.1–105
- 21) A ID: chem9b 6.1–121
- 22) D ID: chem9b 6.1–122
- 23) D ID: chem9b 6.1–124
- 24) E ID: chem9b 6.1-130
- 25) C ID: chem9b 6.1–134
- 26) E ID: chem9b 6.1–135
- 27) E ID: chem9b 6.1–162
- 28) D ID: chem9b 6.1–163
- 29) B ID: chem9b 7.1-2

Answer Key Testname: CH_07_PRAC_TEST.TST

30) D ID: chem9b 7.1-7 31) B ID: chem9b 7.1-10 32) A ID: chem9b 7.1-11 33) D ID: chem9b 7.1-14 34) E ID: chem9b 7.1-15 35) A ID: chem9b 7.1-25 36) D ID: chem9b 7.1-26 37) E ID: chem9b 7.1–27 38) A ID: chem9b 7.1-28 39) D ID: chem9b 7.1-35 40) D ID: chem9b 7.1-37 41) A ID: chem9b 7.1-44 42) D ID: chem9b 7.1-47 43) B ID: chem9b 7.1-49 44) C ID: chem9b 7.1-58 45) C ID: chem9b 7.1-65

46) D ID: chem9b 7.1-73

AP Chewnistry Machine Test
Ch. 7 - Atomic Structure
and Pohlodicity
(1)
$$\lambda = 6 \text{ m}$$
 $C = \lambda -7 \Rightarrow \forall = \frac{C}{2} = \frac{3 \cos v \sqrt{2m}}{6 \text{ m}}$
 $M = mag. = 100000 \text{ K}$
(2) $1.23 \times 10^{-6} \text{ m} = 1.23 \times 10^{-7} \text{ m} \Rightarrow C = \lambda -7 \Rightarrow \forall = \frac{C}{2} = \frac{3 \times 10^{-7} \text{ Hz}}{1.23 \times 10^{-7} \text{ m}} = \frac{1.23 \times 10^{-7} \text{ m}}{5} = 5 \times 10^{-7} \text{ Hz} \times \frac{100}{1000} \text{ m}$
(2) $1.23 \times 10^{-6} \text{ m} = 1.23 \times 10^{-7} \text{ m} \Rightarrow C = \lambda -7 \Rightarrow \forall = \frac{C}{2} = \frac{3 \times 10^{-7} \text{ m}}{1.23 \times 10^{-7} \text{ m}}$
(3) $E = 5.25 \times 10^{-9} \text{ J}$ $E = 1.79 \Rightarrow \forall = \frac{E}{1000}$
 $C = \lambda \sqrt{2} = \frac{3.00 \times 10^{-5} \text{ m}}{7.72 \times 10^{-9} \text{ J}} = 3.79 \times 10^{-7} \text{ m}$
(4) $E = 1.79$
 $\nabla = \frac{2}{10^{-7} \text{ m}} = \frac{3.70 \times 10^{-7} \text{ m}}{6.660 \times 10^{-9} \text{ J}} = 5.6 \times 10^{-9} \text{ J}$
 $E = 5.25 \times 10^{-9} \text{ J} = 5.6 \times 10^{-9} \text{ J}$
 $C = \lambda \sqrt{2} = \frac{3.70 \times 10^{-9} \text{ J}}{7.72 \times 10^{-9} \text{ J}} = 5.6 \times 10^{-5} \text{ J}$
 $C = \lambda \sqrt{2} = \frac{3.70 \times 10^{-9} \text{ J}}{7.72 \times 10^{-9} \text{ J}} = 5.6 \times 10^{-5} \text{ J}$
 $C = \lambda \sqrt{2} = \frac{3.70 \times 10^{-9} \text{ J}}{7.72 \times 10^{-9} \text{ J}} = 5.6 \times 10^{-5} \text{ J}$
 $C = \lambda \sqrt{2} = \frac{3.70 \times 10^{-9} \text{ J}}{7.72 \times 10^{-9} \text{ J}} = 5.6 \times 10^{-5} \text{ J}$
 $C = \lambda \sqrt{2} = \frac{3.200 \times 10^{-9} \text{ J}}{7.72 \times 10^{-9} \text{ J}} = 5.6 \times 10^{-5} \text{ J}$
 $C = \lambda \sqrt{2} = \frac{3.200 \times 10^{-9} \text{ J}}{7.72 \times 10^{-9} \text{ J}} = 5.6 \times 10^{-5} \text{ J}$
 $C = \lambda \sqrt{2} = \frac{3.200 \times 10^{-9} \text{ J}}{7.72 \times 10^{-9} \text{ J}} = 5.6 \times 10^{-5} \text{ J}$
 $C = \lambda \sqrt{2} = \frac{3.200 \times 10^{-9} \text{ J}}{1.00^{-7} \text{ m}} = 4.114 \times 10^{19} \text{ J}$
 $C = \lambda \sqrt{2} \Rightarrow \sqrt{2} = \frac{2.32 \times 10^{-9} \text{ J}}{1.00^{-7} \text{ m}} = 1.01^{-7} \text{ J}$
 $C = \lambda \sqrt{2} \Rightarrow \sqrt{2} = \frac{2.200^{-7} \text{ J}}{1.00^{-7} \text{ J}} = 1.65 \text{ J}$
 $C = 10 \times 10^{-7} \text{ J}$
 $C = \lambda \sqrt{2} = \frac{3.200^{-7} \text{ J}}{1.00^{-7} \text{ M}} = \frac{1.65 \text{ J}}{1.00^{-7} \text{ J}}$
 $C = 0.10^{-1} \text{ J}$
 $C = 0.10^{-1}$

.

(7)
$$E_{4} = -\frac{2.178 \times 10^{-18}}{4^{2}} = -\frac{1.36 \times 10^{-19} \text{ J}}{100}$$

B (16) M=3 - 210 2 Mergy lovel 5 sublevel 1=0 there's will an orbital in an s-sublevel M,= 0 y > Of that's supposed to be a sphere -> Note: axed in your book are slightly different; e.g., (17) (18) Z; and this is true for any orbital a-ms # 0 ever b- when n=z, l # 2 C- when l=c, me # 2 19) d - when l=0, Me +1 e - consect Zo) A - two es have the same 4 grantum #5 21) A - exceptional configuration 22) A-Forbidden BICIE- excited D-correct [Ar] 452326 or 1522522p63523p6452326 or 30/6452 23)(has be-'s B is correct ground state E is the correct answer - 1522522p351 24) 25) (21)'' & A'' = 18 (28) $D ex! Al = [he] 35^{2} + 1$ (2e)E(30) (31) (32) (32) (33)(34)E 29) E-same family (36) (37) E (38) A 390 (10) D (41) A (42) B → 10e-1s each Gall have be s, but Al has 13pt - weird wordingon this (46) >Cs is bigger than Na